
Analysis and Evaluation of “Reducing the Attack
Surfaces” to improve the security of the software at

Design Level

Mubashirah Majeed1, S.M.K Quadri2

1,2 Department of Computer Sciences
University of Kashmir, India

Abstract—After the requirements for a solution has been
identified in the early stages of an application’s software
development lifecycle, the next step is to design and
architect a solution that satisfies those identified
requirements. Developing trusted applications requires
that sound security and privacy decisions be made early in
the design phase because decisions made at this stage will
highly influence subsequent efforts in the latter stages of
the software development lifecycle and the final state of the
application. It has been found that by adopting this
approach, application development costs (such as those
required to address and resolve security and privacy issues)
are significantly reduced compared to if security and
privacy were considered later in the SDLC or not at all.
This is because applications developed against more secure
and privacy aware designs tend to be exposed to fewer
threats and contain less vulnerabilities. The important
practice that should be taken into consideration at the
design phase of the software development life cycle is
addressing security and privacy concerns. In this paper we
analyze and evaluate as to how security of the software will
be improved if reducing the attack surfaces at design level
are addressed. The Attack Surface describes all of the
different points where an attacker could get into a system,
and where they could get data out. We explore the attack
surface first then we discuss how we can Measure and
assess them. We also explore as to how we can manage
them and finally we perform the analysis and review of the
attack surfaces as part of the research findings.

Keywords— vulnerability, attack surfaces, entry points,
risks, security

I. INTRODUCTION

The design phase of the software is considered as the
most important phase and is a process of weighing
important needs for the software in terms of
efficiency/speed, future code maintenance, designing
to minimize bug possibilities, testing/validation before
release. Different industries require much more and
every industry emphasizes different parts of design.
The hope is that a good design lasts a long time and is
stable and easily upgraded in the future. It's hard to get
that from classroom assignments that never last longer
than a single semester going to school. Industry,
however, relies heavily upon design for its future and
profits. [1]

In the real world there is a difference between design (doing
good program design as you go, based on challenges faced)
and design spending a few weeks doing UML diagrams and
formal documents based off inaccurate, idealized views of
things which are out of date as soon as the first line of code is
written).Development teams on the internet' like coding,
because design is worthless alone. Design exists to support
coding, and in that regard is invaluable. Frankly, many of the
important problems in software development aren't in the
code, but in program design.

The important practice that should be taken into
consideration at the design phase of the software development
life cycle is addressing security and privacy concerns .If early
thought is given to this it helps minimize the risk of schedule
disruptions and reduce a project's expense.
Validating all design specifications against a functional
specification involves accurate and complete design
specifications, including minimal cryptographic design
requirements and a specification review. The point of Attack
Surface Analysis is to understand the risk areas in an
application, to make developers and security specialists aware
of what parts of the application are open to attack, to find ways
of minimizing this, and to notice when and how the Attack
Surface changes and what this means from a risk perspective.
[2]

Attack Surface Analysis is usually done by security
architects and pen testers. But developers should understand
and monitor the Attack Surface as they design and build and
change a system. Attack Surface Analysis helps you to:

 identify what functions and what parts of the
system you need to review/test for security
vulnerabilities

 identify high risk areas of code that require
defense-in-depth protection - what parts of the
system that you need to defend.

 identify when you have changed the attack
surface and need to do some kind of threat
assessment

II. DEFINING THE ATTACK SURFACE OF AN APPLICATION

An attack is the “means of exploiting vulnerability” [3].The
Attack Surface describes all of the different points where an
attacker could get into a system, and where they could get data
out.

Mubashirah Majeed et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (3) , 2016, 1471-1475

www.ijcsit.com 1471

The Attack Surface of an application is:
1. the sum of all paths for data/commands into and

out of the application, and
2. the code that protects these paths (including

resource connection and authentication,
authorization, activity logging, data validation
and encoding), and

3. all valuable data used in the application,
including secrets and keys, intellectual
property, critical business data, personal data
and PII, and

4. the code that protects these data (including
encryption and checksums, access auditing, and
data integrity and operational security controls).

You overlay this model with the different types of
users - roles, privilege levels - that can access the system
(whether authorized or not). Complexity increases with
the number of different types of users. But it is important
to focus especially on the two extremes: unauthenticated,
anonymous users and highly privileged admin users (e.g.
database administrators, system administrators).

Conceptual model of an aggregate attack
surface model is given in Figure 1 below. It is an
aggregate in a sense because, although it is the system
attack surface with which we are most concerned,
various pre-system access controls reduce both the
opportunities to reach a system and the number of
system elements an attacker can actually see or use. The
amount of time and effort in ASR activities is system-
and data-classification dependent [4]

Fig 1: Aggregate Attack Surface Model

With this approach, you don't need to understand

every endpoint in order to understand the Attack Surface
and the potential risk profile of a system. Instead, you
can count the different general type of endpoints and the
number of points of each type. With this you can budget
what it will take to assess risk at scale, and you can tell
when the risk profile of an application has significantly
changed. [5]

III. IDENTIFYING AND MAPPING THE ATTACK SURFACE

System software is less than perfect [6].You can start
building a baseline description of the Attack Surface in a
picture and notes. Spend a few hours reviewing design and
architecture documents from an attacker's perspective. Read
through the source code and identify different points of
entry/exit:

 User interface (UI) forms and fields
 HTTP headers and cookies
 APIs
 Files
 Databases
 Other local storage
 Email or other kinds of messages
 Run-time arguments
 …. [custom points of entry/exit]
The total number of different attack points can easily add

up into the thousands or more. To make this manageable,
break the model into different types based on function, design
and technology:

 Login/authentication entry points
 Admin interfaces
 Inquiries and search functions
 Data entry (CRUD) forms
 Business workflows
 Transactional interfaces/APIs

 Operational command and monitoring
interfaces/APIs

 Interfaces with other applications/systems
 ... [custom types]

You also need to identify the valuable data (e.g. confidential,
sensitive, and regulated) in the application, by interviewing
developers and users of the system, and again by reviewing the
source code. [5]

IV. MEASURING AND ASSESSING THE ATTACK SURFACE

Once you have a map of the Attack Surface, identify the high
risk areas. Focus on remote entry points – interfaces with
outside systems and to the Internet – and especially where the
system allows anonymous, public access.

 Network-facing, especially internet-facing code
 Web forms
 Files from outside of the network
 Backwards compatible interfaces with other systems

– old protocols, sometimes old code and libraries,
hard to maintain and test multiple versions

 Custom APIs – protocols etc – likely to have mistakes
in design and implementation

 Security code: anything to do with cryptography,
authentication, authorization (access control) and
session management

These are often where you are most exposed to attack. Then
understand what compensating controls you have in place,
operational controls like network firewalls and application
firewalls, and intrusion detection or prevention systems to help
protect your application. [5]

Mubashirah Majeed et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (3) , 2016, 1471-1475

www.ijcsit.com 1472

V. MANAGING THE ATTACK SURFACE

Once you have a baseline understanding of the Attack
Surface, you can use it to incrementally identify and
manage risks going forward as you make changes to the
application. Ask yourself:

 What has changed?
 What are you doing different? (Technology,

new approach,)
 What holes could you have opened?

The first web page that you create opens up the system’s
Attack Surface significantly and introduces all kinds of
new risks. If you add another field to that page, or
another web page like it, while technically you have
made the Attack Surface bigger, you haven’t increased
the risk profile of the application in a meaningful way.
Each of these incremental changes is more of the same,
unless you follow a new design or use a new framework.

If you add another web page that follows the
same design and using the same technology as existing
web pages, it's easy to understand how much security
testing and review it needs. If you add a new web
services API or file that can be uploaded from the
Internet, each of these changes have a different risk
profile again - see if the change fits in an existing
bucket, see if the existing controls and protections apply.
If you're adding something that doesn't fall into an
existing bucket, this means that you have to go through a
more thorough risk assessment to understand what kind
of security holes you may open and what protections you
need to put in place.

Changes to session management, authentication
and password management directly affect the Attack
Surface and need to be reviewed. So do changes to
authorization and access control logic, especially adding
or changing role definitions, adding admin users or
admin functions with high privileges. Similarly for
changes to the code that handles encryption and secrets.
Fundamental changes to how data validation is done.
And major architectural changes to layering and trust
relationships, or fundamental changes in technical
architecture – swapping out your web server or database
platform, or changing the run-time operating system.
As you add new user types or roles or privilege levels,
you do the same kind of analysis and risk assessment.
Overlay the type of access across the data and functions
and look for problems and inconsistencies. It's important
to understand the access model for the application,
whether it is positive (access is deny by default) or
negative (access is allow by default). In a positive access
model, any mistakes in defining what data or functions
are permitted to a new user type or role are easy to see.
In a negative access model, you have to be much more
careful to ensure that a user does not get access to
data/functions that they should not be permitted to.
This kind of threat or risk assessment can be done
periodically, or as a part of design work in serial /
phased / spiral / waterfall development projects, or
continuously and incrementally in Agile / iterative
development. [5]

VI. RESULTS AND RESEARCH FINDINGS

Flaws in system software create vulnerabilities that enable
most1 of the reported system intrusions. Anecdotal evidence
supports a hypothesis that poor system administration
practices, including the failure to apply available patches in a
timely fashion, results in an excessive window of vulnerability
for the affected systems. As far as we have been able to
determine, no studies exist that would either confirm or refute
this conjecture though is is widely believed and often repeated.
[6] Building secure software, software that withstands attacks,
isn't easy and at the same time reducing the code open to
attack by default is again not an easy job. These nasty security
issues occur for the following reasons:

 The product had a security flaw.
 The product is popular or is running by default.

For example I tested the security awareness of a development
team working on a project with help of the following code
snippet. To their understanding there was no flaw/weakness in
this code.
char *ptr = "Hello, How are you! "
 "This is a just for testing purpose"
 "You should always focus on writing the secure code";
char *buf = new char[sizeof(ptr) + 1];
if (buf)
 strncpy(buf,ptr,strlen(ptr));
delete [] buf;
However there is a security vulnerability which is “buffer over
run”. Buffer size was calculated incorrectly. sizeof(p) is the
size of a pointer, which, in this case is only 4 bytes. Sizeof (p)
does not return the length of the string, which is what was
intended. This security vulnerability is called as “buffer over
run”. It was there in the code because neither its requirement
was identified at requirement engineering level nor was it
handled at the design level.

Apart from this an interesting question which might
arise: how much more secure is the product that is currently in
development than the product that is currently shipping? This
is really a difficult question to answer but you could calculate
the "Attackability" of a product or its exposure to attack, but
not necessarily its vulnerability. That is, how many features
are there to attack, not necessarily exploit. Intuition: Reduce
the ways attackers can penetrate surface means to increase the
system’s security [7].

Fig 2: Attackability Scenario

 Here's how you do it. First, all products are attacked in
certain ways—most products are often attacked through open
ports, Windows has its services attacked, weak ACLs are an
attack point too. Many Linux and Unix operating systems are

Mubashirah Majeed et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (3) , 2016, 1471-1475

www.ijcsit.com 1473

attacked through root applications and symbolic links.
So, the first step is to look over old vulnerabilities and
determine the root attack vector. For Windows, we came
up with this list:

 Open sockets
 Open RPC endpoints
 Open named pipes
 Services
 Services running by default
 Services running as SYSTEM
 Active Web handlers (ASP files, HTR files etc)
 Active ISAPI Filters
 Dynamic Web pages (ASP and such)
 Executable virtual directories
 Enabled Accounts

Think of this as the list of features an attacker will
attempt to compromise. Each attack point has a weight
or a bias. For example, a service that runs by default
under the SYSTEM account and opens a socket to the
world is a prime candidate for attack. It may be very
secure code, but the fact that it is running by default, and
is running with such elevated privileges, makes it high
on the list of points for an attacker to probe. And if the
code is vulnerable, the resulting damage could be
disastrous.

On analyzing various versions of Windows, people
at Microsoft end up with the following relative attack
surface figures as shown in Table 1.

TABLE 1
Relative attack surface for various versions of Microsoft Windows

Fig 3. Relative attack surface for various versions of Microsoft
Windows

The most telling figures are between Windows 2000 and
Windows Server 2003, and between Windows Server 2003
and Windows Server 2003 with IIS 6.0 installed. As you can
see, the attack surface of a default Windows Server 2003
computer is approximately half that of a Windows 2000
computer. This speaks loudly to the security work performed
by the Windows product group [8]

We have analyzed that to improve the security of the
software at design level there are a couple of caveats to this
attack surface calculation. First, it does not represent the code
quality, but rather determines the relative "Attackability" of
the software. It does not mean that there are security flaws in
the code.

Second, it is possible to create a product that
manipulates these figures. For example, you could multiplex
functionality behind single analysis points, which would skew
the figures.

Keep the following things in mind while working
with applications which are vulnerable to attacks:

 Reduce the amount of running code. Use the 80/20
rule; if 80 percent of the users accessing the system
do not need a service or process, do not let it run. If
you are the developer, make it the default setting: if
the security practitioner, turn it off.

 Restrict access to network endpoints used by your
application to the local network segment or an
explicit IP address range. Conversely, consider
allowing access to system entry points only for
subjects in trusted network segments.

 Limit access to network endpoints using
authentication. Simply validating a subject reduces
your system’s attack surface.

 Reduce the privilege under which processes execute.
This includes both code written in-house and by
third-parties.

 As you review data flow diagrams and attack trees,
look for anonymous threat paths: paths for which
authentication or authorization are not necessary.
Consider controlling them with authentication and
assignment of access rights.

 Apply the 80/20 rule to all protocols.
 Define your minimal attack surface early in system or

application design and measure it periodically to
ensure compliance.

 If you have a large attack surface, you will spend
more time managing vulnerabilities and trying to
ensure all code and system configurations are perfect.
Again, this is an impossible task.[4]

VII. CONCLUSION
Security at design layer should be considered as most
important activity within the phase. Eradicating coding bugs
with security implications is not sufficient. Design
vulnerabilities can have a substantial detrimental impact on
security and are much more difficult to address during the
verification phase. This paper analyses and evaluates as to how
security of the software will be improved if reducing the attack
surfaces at design level are addressed. Reducing the number of
vulnerabilities in an application, is the goal of secure coding

Mubashirah Majeed et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (3) , 2016, 1471-1475

www.ijcsit.com 1474

and not attack surface reduction. The use of security
code scanning tools will help developers identify
vulnerabilities in code and reduce the overall number of
vulnerabilities present in an application, but will not
reduce the attack surface. We tested the security
awareness of a development team working on a project
with help of a code snippet. To their understanding there
was no flaw/weakness in the code. However there was a
security vulnerability which is “buffer over run”. It was
there in the code because neither its requirement was
identified at requirement engineering level nor was it
handled at the design level. So before proceeding to
design make sure that the security requirements have
been enlisted in the requirement engineering phase and
similarly before proceeding to coding again make sure
that security requirements have been included in the
design which will be finally implemented in the
implementation phase of the software development
cycle.

REFERENCES
[1] “Why is design so important in building software” http://

www.quora.com.
[2] SDL Process: Design https://www.microsoft.com/en-

us/sdl/process/design.aspx.
[3] Howard, M., Pincus, J., & Wing, J. (2002, February 11). Measuring

Relative Attack Surfaces. Retrieved February 8, 2012, from Carnegie
Mellon School of Computer.
http://www.cs.cmu.edu/~wing/publications/Howard-Wing03.pdf

[4] “Attack Surface Reduction – Chapter 4”
http://resources.infosecinstitute.com/attack-surface-reduction/.

[5] “Attack Surface Analysis Cheat Sheet” https://www.owasp.org/.
[6] Browne, Hilary K., William A. Arbaugh, John McHugh, and William

L. Fithen, ``A Trend Analysis of Exploitations,'' In Proceedings of the
2001 IEEE Security and Privacy Conference, pages 214-229, Oakland,
CA, http://www.cs. umd.edu/~waa/pubs/CS-TR-4200.pdf, May 2001

[7] Wing, J., Howard, M., & Pincus, J. (2003, December). Measuring
Relative Attack Surfaces (PowerPoint Presentation). Retrieved
February 11, 2012, from Academia Sinica, Institute of Information
Science: http://iis.sinica.edu.tw/wadis03/slides/Wing.ppt

[8] Michael Howard, “Secure Windows Initiative” “Fending off Future
Attacks by Reducing Attack Surface” https://msdn.microsoft.com/en-
us/library/ms972812.aspx.

Mubashirah Majeed et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (3) , 2016, 1471-1475

www.ijcsit.com 1475

